Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38540157

RESUMO

Malignant neoplasms are characterized by high molecular heterogeneity due to multilevel deregulation of gene expression and cellular functions. It is known that non-coding RNAs, including long intergenic non-coding RNAs (lincRNAs), can play significant roles in cancer biology. The current review focuses on a systematical analysis of genomic, transcriptomic, epigenomic, interactomic, and literature data on 65 lincRNAs of human chromosome 18 in the context of pan-cancer studies. The entire group of lincRNAs can be conditionally divided into 4 subgroups depending on experimental evidence on direct or indirect involvement in cancers and the biological associations with cancers, which we found during the data-mining process: the most studied (5 lincRNAs), moderately or poorly studied (11 lincRNAs), and understudied (31 lincRNAs). For the remaining 18 lincRNAs, data for analysis were fragmentary or missing. Among the key findings were the following: Of the lincRNAs of human chromosome 18, 40% have tissue-specific expression patterns, 22% of lincRNAs are known to have gene fusions, 40% of lincRNAs are prone to gene amplifications and/or deletions in cancers at a frequency greater than 3%, and 23% of lincRNAs are differentially expressed across cancer types, whereas 7% have subtype-specific expression patterns. LincRNAs' interactomes consist of 'master' microRNAs and 47 proteins (including cancer-associated proteins and microRNAs) that can interact with 3 or more lincRNAs. Functional enrichment analysis of a set of highly co-expressed genes retrieved for 17 lincRNAs in different cancer types indicated the potential associations of these lincRNAs with cellular signaling pathways. Six lincRNAs encoded small open-reading frame (smORF) proteins with emerging roles in cancers, and microRNAs as well as proteins with known functions in molecular carcinogenesis can bind to coding regions of smORFs. We identified seven transcriptomic signatures with potential prognostic value, consisting of two to seven different lincRNAs only. Taken together, the literature, biomedical, and molecular biology data analyzed indicated that only five of all lincRNAs of human chromosome 18 are cancer-associated, while eleven other lincRNAs have the tendency to be associated with cancers.

2.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396748

RESUMO

Dehydroepiandrosterone (DHEA), a precursor of steroid sex hormones, is synthesized by steroid 17-alpha-hydroxylase/17,20-lyase (CYP17A1) with the participation of microsomal cytochrome b5 (CYB5A) and cytochrome P450 reductase (CPR), followed by sulfation by two cytosolic sulfotransferases, SULT1E1 and SULT2A1, for storage and transport to tissues in which its synthesis is not available. The involvement of CYP17A1 and SULTs in these successive reactions led us to consider the possible interaction of SULTs with DHEA-producing CYP17A1 and its redox partners. Text mining analysis, protein-protein network analysis, and gene co-expression analysis were performed to determine the relationships between SULTs and microsomal CYP isoforms. For the first time, using surface plasmon resonance, we detected interactions between CYP17A1 and SULT2A1 or SULT1E1. SULTs also interacted with CYB5A and CPR. The interaction parameters of SULT2A1/CYP17A1 and SULT2A1/CYB5A complexes seemed to be modulated by 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Affinity purification, combined with mass spectrometry (AP-MS), allowed us to identify a spectrum of SULT1E1 potential protein partners, including CYB5A. We showed that the enzymatic activity of SULTs increased in the presence of only CYP17A1 or CYP17A1 and CYB5A mixture. The structures of CYP17A1/SULT1E1 and CYB5A/SULT1E1 complexes were predicted. Our data provide novel fundamental information about the organization of microsomal CYP-dependent macromolecular complexes.


Assuntos
Complexos Multienzimáticos , Esteroide 17-alfa-Hidroxilase , Sulfato de Desidroepiandrosterona , Complexos Multienzimáticos/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Oxirredução , Esteroides , Ressonância de Plasmônio de Superfície , Sulfotransferases/genética , Sulfotransferases/metabolismo
3.
Biomedicines ; 11(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001874

RESUMO

Due to the increasing prevalence of fungal diseases caused by fungi of the genus Candida and the development of pathogen resistance to available drugs, the need to find new effective antifungal agents has increased. Azole antifungals, which are inhibitors of sterol-14α-demethylase or CYP51, have been widely used in the treatment of fungal infections over the past two decades. Of special interest is the study of C. krusei CYP51, since this fungus exhibit resistance not only to azoles, but also to other antifungal drugs and there is no available information about the ligand-binding properties of CYP51 of this pathogen. We expressed recombinant C. krusei CYP51 in E. coli cells and obtained a highly purified protein. Application of the method of spectrophotometric titration allowed us to study the interaction of C. krusei CYP51 with various ligands. In the present work, the interaction of C. krusei CYP51 with azole inhibitors, and natural and synthesized steroid derivatives was evaluated. The obtained data indicate that the resistance of C. krusei to azoles is not due to the structural features of CYP51 of this microorganism, but rather to another mechanism. Promising ligands that demonstrated sufficiently strong binding in the micromolar range to C. krusei CYP51 were identified, including compounds 99 (Kd = 1.02 ± 0.14 µM) and Ch-4 (Kd = 6.95 ± 0.80 µM). The revealed structural features of the interaction of ligands with the active site of C. krusei CYP51 can be taken into account in the further development of new selective modulators of the activity of this enzyme.

4.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373333

RESUMO

Functions of about 10% of all the proteins and their associations with diseases are poorly annotated or not annotated at all. Among these proteins, there is a group of uncharacterized chromosome-specific open-reading frame genes (CxORFx) from the 'Tdark' category. The aim of the work was to reveal associations of CxORFx gene expression and ORF proteins' subinteractomes with cancer-driven cellular processes and molecular pathways. We performed systems biology and bioinformatic analysis of 219 differentially expressed CxORFx genes in cancers, an estimation of prognostic significance of novel transcriptomic signatures and analysis of subinteractome composition using several web servers (GEPIA2, KMplotter, ROC-plotter, TIMER, cBioPortal, DepMap, EnrichR, PepPSy, cProSite, WebGestalt, CancerGeneNet, PathwAX II and FunCoup). The subinteractome of each ORF protein was revealed using ten different data sources on physical protein-protein interactions (PPIs) to obtain representative datasets for the exploration of possible cellular functions of ORF proteins through a spectrum of neighboring annotated protein partners. A total of 42 out of 219 presumably cancer-associated ORF proteins and 30 cancer-dependent binary PPIs were found. Additionally, a bibliometric analysis of 204 publications allowed us to retrieve biomedical terms related to ORF genes. In spite of recent progress in functional studies of ORF genes, the current investigations aim at finding out the prognostic value of CxORFx expression patterns in cancers. The results obtained expand the understanding of the possible functions of the poorly annotated CxORFx in the cancer context.


Assuntos
Neoplasias , Proteínas , Humanos , Prognóstico , Proteínas/genética , Neoplasias/genética , Biologia Computacional , Fases de Leitura Aberta/genética
5.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555337

RESUMO

Most proteins function as part of various complexes, forming via stable and dynamic protein-protein interactions (PPIs). The profiling of PPIs expands the fundamental knowledge about the structures, functions, and regulation patterns of protein complexes and intracellular molecular machineries. Protein interactomics aims at solving three main tasks: (1) identification of protein partners and parts of complex intracellular structures; (2) analysis of PPIs parameters (affinity, molecular-recognition specificity, kinetic rate constants, and thermodynamic-parameters determination); (3) the study of the functional role of novel PPIs. The purpose of this work is to update the current state and prospects of multi-omics approaches to profiling of proteins involved in the formation of stable complexes. Methodological paradigm includes a development of protein-extraction and -separation techniques from tissues or cellular lysates and subsequent identification of proteins using mass-spectrometry analysis. In addition, some aspects of authors' experimental platforms, based on high-performance size-exclusion chromatography, procedures of molecular fishing, and protein identification, as well as the possibilities of interactomic taxonomy of each protein, are discussed.


Assuntos
Proteínas , Espectrometria de Massas , Cromatografia em Gel
6.
Biology (Basel) ; 11(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35453789

RESUMO

Cancer-associated disturbance of prostanoid signaling provides an aberrant accumulation of prostanoids. This signaling consists of 19 target genes, encoding metabolic enzymes and G-protein-coupled receptors, and prostanoids (prostacyclin, thromboxane, and prostaglandins E2, F2α, D2, H2). The study addresses the systems biology analysis of target genes in 24 solid tumors using a data mining pipeline. We analyzed differential expression patterns of genes and proteins, promoter methylation status as well as tissue-specific master regulators and microRNAs. Tumor types were clustered into several groups according to gene expression patterns. Target genes were characterized as low mutated in tumors, with the exception of melanoma. We found at least six ubiquitin ligases and eight protein kinases that post-translationally modified the most connected proteins PTGES3 and PTGIS. Models of regulation of PTGIS and PTGIR gene expression in lung and uterine cancers were suggested. For the first time, we found associations between the patient's overall survival rates with nine multigene transcriptomics signatures in eight tumors. Expression patterns of each of the six target genes have predictive value with respect to cytostatic therapy response. One of the consequences of the study is an assumption of prostanoid-dependent (or independent) tumor phenotypes. Thus, pharmacologic targeting the prostanoid signaling could be a probable additional anticancer strategy.

7.
Biomolecules ; 12(1)2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-35053254

RESUMO

The identification of disease-related protein-protein interactions (PPIs) creates objective conditions for their pharmacological modulation. The contact area (interfaces) of the vast majority of PPIs has some features, such as geometrical and biochemical complementarities, "hot spots", as well as an extremely low mutation rate that give us key knowledge to influence these PPIs. Exogenous regulation of PPIs is aimed at both inhibiting the assembly and/or destabilization of protein complexes. Often, the design of such modulators is associated with some specific problems in targeted delivery, cell penetration and proteolytic stability, as well as selective binding to cellular targets. Recent progress in interfacial peptide design has been achieved in solving all these difficulties and has provided a good efficiency in preclinical models (in vitro and in vivo). The most promising peptide-containing therapeutic formulations are under investigation in clinical trials. In this review, we update the current state-of-the-art in the field of interfacial peptides as potent modulators of a number of disease-related PPIs. Over the past years, the scientific interest has been focused on following clinically significant heterodimeric PPIs MDM2/p53, PD-1/PD-L1, HIF/HIF, NRF2/KEAP1, RbAp48/MTA1, HSP90/CDC37, BIRC5/CRM1, BIRC5/XIAP, YAP/TAZ-TEAD, TWEAK/FN14, Bcl-2/Bax, YY1/AKT, CD40/CD40L and MINT2/APP.


Assuntos
Fator 2 Relacionado a NF-E2 , Peptídeos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Peptídeos/química , Ligação Proteica
8.
Biomedicines ; 9(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34440098

RESUMO

A global protein interactome ensures the maintenance of regulatory, signaling and structural processes in cells, but at the same time, aberrations in the repertoire of protein-protein interactions usually cause a disease onset. Many metabolic enzymes catalyze multistage transformation of cholesterol precursors in the cholesterol biosynthesis pathway. Cancer-associated deregulation of these enzymes through various molecular mechanisms results in pathological cholesterol accumulation (its precursors) which can be disease risk factors. This work is aimed at systematization and bioinformatic analysis of the available interactomics data on seventeen enzymes in the cholesterol pathway, encoded by HMGCR, MVK, PMVK, MVD, FDPS, FDFT1, SQLE, LSS, DHCR24, CYP51A1, TM7SF2, MSMO1, NSDHL, HSD17B7, EBP, SC5D, DHCR7 genes. The spectrum of 165 unique and 21 common protein partners that physically interact with target enzymes was selected from several interatomic resources. Among them there were 47 modifying proteins from different protein kinases/phosphatases and ubiquitin-protein ligases/deubiquitinases families. A literature search, enrichment and gene co-expression analysis showed that about a quarter of the identified protein partners was associated with cancer hallmarks and over-represented in cancer pathways. Our results allow to update the current fundamental view on protein-protein interactions and regulatory aspects of the cholesterol synthesis enzymes and annotate of their sub-interactomes in term of possible involvement in cancers that will contribute to prioritization of protein targets for future drug development.

9.
Molecules ; 26(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924405

RESUMO

Widespread pathologies such as atherosclerosis, metabolic syndrome and cancer are associated with dysregulation of sterol biosynthesis and metabolism. Cholesterol modulates the signaling pathways of neoplastic transformation and tumor progression. Lanosterol 14-alpha demethylase (cytochrome P450(51), CYP51A1) catalyzes one of the key steps in cholesterol biosynthesis. The fairly low somatic mutation frequency of CYP51A1, its druggability, as well as the possibility of interfering with cholesterol metabolism in cancer cells collectively suggest the clinical importance of CYP51A1. Here, we show that the natural flavonoid, luteolin 7,3'-disulfate, inhibits CYP51A1 activity. We also screened baicalein and luteolin, known to have antitumor activities and low toxicity, for their ability to interact with CYP51A1. The Kd values were estimated using both a surface plasmon resonance optical biosensor and spectral titration assays. Unexpectedly, in the enzymatic activity assays, only the water-soluble form of luteolin-luteolin 7,3'-disulfate-showed the ability to potently inhibit CYP51A1. Based on molecular docking, luteolin 7,3'-disulfate binding suggests blocking of the substrate access channel. However, an alternative site on the proximal surface where the redox partner binds cannot be excluded. Overall, flavonoids have the potential to inhibit the activity of human CYP51A1 and should be further explored for their cholesterol-lowering and anti-cancer activity.


Assuntos
Flavonoides/química , Luteolina/química , Esterol 14-Desmetilase/metabolismo , Humanos , Síndrome Metabólica/metabolismo , Simulação de Acoplamento Molecular , Ressonância de Plasmônio de Superfície
10.
Cell Biol Int ; 45(6): 1175-1182, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33527589

RESUMO

The current article aims to summarize all possible spectrum of protein-protein interactions for thromboxane A synthase (CYP5A1) and prostacyclin synthase (CYP8A1). These enzymes metabolize the same substrate (prostaglandin H2 ) and can participate in cardiovascular, inflammatory, immune processes, and apoptosis modulation, as well as significantly influence the risk of cancers. Binary protein-protein and multiprotein complexes are of great importance in enzyme-regulating and signal-transduction pathways. However, protein partners of CYP5A1 and CYP8A1 are not yet fully identified, although both synthases are considered as prospective drug targets. At least 36 novel protein partners of CYP5A1 and CYP8A1 were revealed from different tissue types using an approach based on affinity isolation and mass spectrometry. Enrichment analysis showed that these proteins have different molecular functions: folding (refolding), unfolded protein and chaperon binding, protein transport (export/import), posttranslational modification, protein domain-specific binding, antioxidant activity, and glutathione homeostasis. A significant part of them, belonging to molecular chaperones, were common partners for CYP5A1 and CYP8A1, while other proteins were unique with the tissue-dependent distribution. New aspects of CYP5A1 and CYP8A1 interactomics and hetero-complex formation with different protein partners, including cytochrome P450s are discussed.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Tromboxano-A Sintase/metabolismo , Humanos , Ligantes , Complexos Multiproteicos , Ligação Proteica
11.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066693

RESUMO

Isatin (indole-2, 3-dione) is a non-peptide endogenous bioregulator exhibiting a wide spectrum of biological activity, realized in the cell via interactions with numerous isatin-binding proteins, their complexes, and (sub) interactomes. There is increasing evidence that isatin may be involved in the regulation of complex formations by modulating the affinity of the interacting protein partners. Recently, using Surface Plasmon Resonance (SPR) analysis, we have found that isatin in a concentration dependent manner increased interaction between two human mitochondrial proteins, ferrochelatase (FECH), and adrenodoxine reductase (ADR). In this study, we have investigated the affinity-enhancing effect of isatin on the FECH/ADR interaction. The SPR analysis has shown that FECH forms not only homodimers, but also FECH/ADR heterodimers. The affinity-enhancing effect of isatin on the FECH/ADR interaction was highly specific and was not reproduced by structural analogues of isatin. Bioinformatic analysis performed using three dimensional (3D) models of the interacting proteins and in silico molecular docking revealed the most probable mechanism involving FECH/isatin/ADR ternary complex formation. In this complex, isatin is targeted to the interface of interacting FECH and ADR monomers, forming hydrogen bonds with both FECH and ADR. This is a new regulatory mechanism by which isatin can modulate protein-protein interactions (PPI).


Assuntos
Ferredoxina-NADP Redutase/química , Ferroquelatase/química , Isatina/química , Ferredoxina-NADP Redutase/metabolismo , Ferroquelatase/metabolismo , Humanos , Isatina/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Ressonância de Plasmônio de Superfície
12.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872553

RESUMO

The cholinergic deficit in Alzheimer's disease (AD) may arise from selective loss of cholinergic neurons caused by the binding of Aß peptide to nicotinic acetylcholine receptors (nAChRs). Thus, compounds preventing such an interaction are needed to address the cholinergic dysfunction. Recent findings suggest that the 11EVHH14 site in Aß peptide mediates its interaction with α4ß2 nAChR. This site contains several charged amino acid residues, hence we hypothesized that the formation of Aß-α4ß2 nAChR complex is based on the interaction of 11EVHH14 with its charge-complementary counterpart in α4ß2 nAChR. Indeed, we discovered a 35HAEE38 site in α4ß2 nAChR, which is charge-complementary to 11EVHH14, and molecular modeling showed that a stable Aß42-α4ß2 nAChR complex could be formed via the 11EVHH14:35HAEE38 interface. Using surface plasmon resonance and bioinformatics approaches, we further showed that a corresponding tetrapeptide Ac-HAEE-NH2 can bind to Aß via 11EVHH14 site. Finally, using two-electrode voltage clamp in Xenopus laevis oocytes, we showed that Ac-HAEE-NH2 tetrapeptide completely abolishes the Aß42-induced inhibition of α4ß2 nAChR. Thus, we suggest that 35HAEE38 is a potential binding site for Aß on α4ß2 nAChR and Ac-HAEE-NH2 tetrapeptide corresponding to this site is a potential therapeutic for the treatment of α4ß2 nAChR-dependent cholinergic dysfunction in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos/farmacologia , Receptores Nicotínicos/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação/efeitos dos fármacos , Feminino , Humanos , Modelos Moleculares , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Peptídeos/química , Conformação Proteica , Receptores Nicotínicos/química , Ressonância de Plasmônio de Superfície , Xenopus laevis
13.
Biology (Basel) ; 8(2)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226805

RESUMO

Prostacyclin synthase (PTGIS; EC 5.3.99.4) catalyzes isomerization of prostaglandin H2 to prostacyclin, a potent vasodilator and inhibitor of platelet aggregation. At present, limited data exist on functional coupling and possible ways of regulating PTGIS due to insufficient information about protein-protein interactions in which this crucial enzyme is involved. The aim of this study is to isolate protein partners for PTGIS from rat tissue lysates. Using CNBr-activated Sepharose 4B with covalently immobilized PTGIS as an affinity sorbent, we confidently identified 58 unique proteins by mass spectrometry (LC-MS/MS). The participation of these proteins in lysate complex formation was characterized by SEC lysate profiling. Several potential members of the PTGIS subinteractome have been validated by surface plasmon resonance (SPR) analysis. SPR revealed that PTGIS interacted with full-length cytochrome P450 2J2 and glutathione S-transferase (GST). In addition, PTGIS was shown to bind synthetic peptides corresponding to sequences of for GSTA1, GSTM1, aldo-keto reductase (AKR1A1), glutaredoxin 3 (GLRX3) and histidine triad nucleotide binding protein 2 (HINT2). Prostacyclin synthase could potentially be involved in functional interactions with identified novel protein partners participating in iron and heme metabolism, oxidative stress, xenobiotic and drugs metabolism, glutathione and prostaglandin metabolism. The possible biological role of the recognized interaction is discussed in the context of PTGIS functioning.

14.
Sensors (Basel) ; 18(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783662

RESUMO

We have developed an original experimental approach based on the use of surface plasmon resonance (SPR) biosensors, applicable for investigation of potential partners involved in protein⁻protein interactions (PPI) as well as protein⁻peptide or protein⁻small molecule interactions. It is based on combining a SPR biosensor, size exclusion chromatography (SEC), mass spectrometric identification of proteins (LC-MS/MS) and direct molecular fishing employing principles of affinity chromatography for isolation of potential partner proteins from the total lysate of biological samples using immobilized target proteins (or small non-peptide compounds) as ligands. Applicability of this approach has been demonstrated within the frame of the Human Proteome Project (HPP) and PPI regulation by a small non-peptide biologically active compound, isatin.


Assuntos
Técnicas Biossensoriais , Mapas de Interação de Proteínas , Proteínas/química , Ressonância de Plasmônio de Superfície/métodos , Cromatografia em Gel , Proteínas Imobilizadas/química , Ligantes , Espectrometria de Massas , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Espectrometria de Massas em Tandem
15.
Protein Sci ; 26(12): 2458-2462, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28905435

RESUMO

Isatin (indol-2,3-dione) is an endogenous non-peptide regulator exhibiting a wide range of biological and pharmacological activities, which are poorly characterized in terms of their molecular mechanisms. Identification of many isatin-binding proteins in the mammalian brain and liver suggests that isatin may influence their functions. We have hypothesized that besides direct action on particular protein targets, isatin can act as a regulator of protein-protein interactions (PPIs). In this surface plasmon resonance-based biosensor study we have found that physiologically relevant concentrations of isatin (25-100 µM) increase affinity of interactions between human recombinant ferrochelatase (FECH) and NADPH-dependent adrenodoxin reductase (ADR). In the presence of increasing concentrations of isatin the Kd values demonstrated a significant (up to 6-fold) decrease. It is especially important that the interaction of isatin with each individual protein (FECH, ADR) was basically negligible and therefore could not contribute to the observed effect. This effect was specific only for the FECH/ADR complex formation and was not observed for other protein complexes studied: FECH/cytochrome b5(CYB5A) and FECH/SMAD4.


Assuntos
Ferredoxina-NADP Redutase , Ferroquelatase , Isatina/farmacologia , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Ferroquelatase/química , Ferroquelatase/metabolismo , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Isatina/química , Cinética , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
16.
J Alzheimers Dis ; 54(2): 809-19, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27567853

RESUMO

Amyloid-ß peptide (Aß) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aß, intraneuronal Aß (iAß) has been suggested to contribute to AD onset and development. Based on reported in vitro Aß-DNA interactions and nuclear localization of iAß, the interference of iAß with the normal DNA expression has recently been proposed as a plausible pathway by which Aß can exert neurotoxicity. Employing the sedimentation assay, thioflavin T fluorescence, and dynamic light scattering we have studied effects of zinc ions on binding of RNA and single- and double-stranded DNA molecules to Aß42 aggregates. It has been found that zinc ions significantly enhance the binding of RNA and DNA molecules to pre-formed ß-sheet rich Aß42 aggregates. Another type of Aß42 aggregates, the zinc-induced amorphous aggregates, was demonstrated to also bind all types of nucleic acids tested. To evaluate the role of the Aß metal-binding domain's histidine residues in Aß-nucleic acid interactions mediated by zinc, Aß16 mutants with substitutions H6R and H6A-H13A and rat Aß16 lacking histidine residue 13 were used. The zinc-induced interaction of Aß16 with DNA was shown to critically depend on histidine residues 6 and 13. However, the inclusion of H6R mutation in Aß42 peptide did not affect DNA binding to Aß42 aggregates. Since oxidative and/or nitrosative stresses implicated in AD pathogenesis are known to release zinc ions from metallothioneins in cytoplasm and cell nuclei, our findings suggest that intracellular zinc can be an important player in iAß-nucleic acid interactions.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Histidina/fisiologia , Ácidos Nucleicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/fisiologia , Zinco/metabolismo , Células Hep G2 , Humanos , Ligação Proteica/fisiologia , Zinco/farmacologia
17.
J Biomol Struct Dyn ; 34(11): 2317-26, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26513486

RESUMO

Zinc ions and modified amyloid-beta peptides (Aß) play a critical role in the pathological aggregation of endogenous Aß in Alzheimer's disease (AD). Zinc-induced Aß oligomerization is mediated by the metal-binding domain (MBD) which includes N-terminal residues 1-16 (Aß1-16). Earlier, it has been shown that Aß1-16 as well as some of its naturally occurring variants undergoes zinc-induced homodimerization via the interface in which zinc ion is coordinated by Glu11 and His14 of the interacting subunits. In this study using surface plasmon resonance technique, we have found that in the presence of zinc ions Aß1-16 forms heterodimers with MBDs of two Aß species linked to AD: Aß containing isoAsp7 (isoAß) and Aß containing phosphorylated Ser8 (pS8-Aß). The heterodimers appear to possess the same interface as the homodimers. Simulation of 200 ns molecular dynamic trajectories in two constructed models of dimers ([Aß1-16/Zn/Aß1-16] and [isoAß1-16/Zn/Aß1-16]), has shown that conformational flexibility of the N-terminal fragments of the dimer subunits is controlled by the structure of corresponding sites 6-8. The data suggest that isoAß and pS8-Aß can be involved in the AD pathogenesis by means of their zinc-dependent interactions with endogenous Aß resulting in the formation of heterodimeric seeds for amyloid aggregation.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Zinco/metabolismo , Doença de Alzheimer/metabolismo , Animais , Técnicas Biossensoriais , Humanos , Íons/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ratos
18.
J Alzheimers Dis ; 36(4): 633-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23645095

RESUMO

The interaction of the 16-mer synthetic peptide (Aß16), which represents the metal-binding domain of the amyloid-ß with DNA, was studied employing the surface plasmon resonance technique. It has been shown that Aß16 binds to the duplex DNA in the presence of zinc ions and thus the metal-binding domain can serve as a zinc-dependent DNA-binding site of the amyloid-ß. The interaction of Aß16 with DNA most probably depends on oligomerization of the peptide and is dominated by interaction with phosphates of the DNA backbone.


Assuntos
Peptídeos beta-Amiloides/metabolismo , DNA/metabolismo , Fragmentos de Peptídeos/metabolismo , Zinco/metabolismo , Animais , Sítios de Ligação/fisiologia , Humanos
19.
Mol Biosyst ; 7(4): 1053-5, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21350790

RESUMO

Analysis of complex formation between amyloid-ß fragments using surface plasmon resonance biosensing and electrospray mass spectrometry reveals that region 11-14 mediates zinc-induced dimerization of amyloid-ß and may serve as a potential drug target for preventing development and progression of Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Zinco/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Concentração de Íons de Hidrogênio , Cinética , Fragmentos de Peptídeos/química , Ligação Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...